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Abstract

The generalized self-consistent model (GSCM) for the analysis of elastic wave propagation in composite materials is
recast. Following the idea of the GSCM in the static problem, elastic wave energy in the model is evaluated by applying
the energy theorem for the elastic wave scattering in an absorbing medium. The conditions for dynamic effective
medium are then obtained in a self-consistent way as those under which the extinguished wave energy in the model
vanishes, thus without relying on the multiple scattering formalism. It is shown that the present dynamic GSCM is
equivalent to the models of Yang and Mal [J. Mech. Phys. Solids 42 (1994) 1945] and Yang [J. Appl. Mech. 70 (2003)
575] that have been obtained through the use of the multiple scattering formalism of Waterman and Truell. Numerical
results for both fiber-reinforced and particulate composites are presented. Physical realizability of the dynamic GSCM
in the low frequency limit is discussed briefly.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The analysis of elastic wave propagation in inhomogeneous media for determining their overall dynamic
properties has been investigated by many authors for several decades due to its necessity, for example, in
the ultrasonic nondestructive evaluation (NDE) of the composite materials. Elastic waves propagating in
such media inevitably undergo multiple scattering by distributed inhomogeneities, which results in dis-
persion and attenuation of the coherent wave. Due to the inherent complexity of the multiple scattering
phenomenon, analytical modeling of wave propagation in the inhomogeneous media is intractable. A brief
review of different proposed theories can be found in Yang and Mal (1994) and comparisons between them
have been made with their numerical results (Kim, 1996, 2003a).
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On the other hand, numerous model-based approaches have been developed in the area of the mi-
cromechanics of composite materials for the determination of static effective properties (Nemat-Nasser and
Hori, 1999). Among many others, the generalized self-consistent model (GSCM) proposed by Christensen
and Lo (1979) and validated later by Christensen (1990) has been received considerable attention in the
recognition that it is the most reliable model to predict static effective properties of composites. For this
reason, the GSCM has been studied extensively and extended to different types of composites (Jiang et al.,
2001; Huang and Hu, 1995), and also to composites with imperfections or damage (Teng, 1992; Benveniste,
1985).

An extension of the GSCM to the dynamic (elastic wave propagation) problem has been attempted by
Yang and Mal (1994) for a fiber-reinforced composite and by Kim (1994) and Yang (2003) for a particulate
composite. Yang and Mal (1994) and Yang (2003) implemented the multiple scattering theory of Waterman
and Truell (1961) in the frame work of the GSCM and obtained the formulae for the dynamic effective
medium in a self-consistent form of the multiple scattering formulae which were originally in non-self-
consistent forms. Huang and Rokhlin (1995) and Yang and Mal (1996) applied the dynamic GSCM to
coated fiber-reinforced composites to investigate the effect of interphase weakening on the wave propa-
gation. Kim (1994) has extended the GSCM by attempting to find effective material properties so that the
total scattered power (or energy) in the model vanishes on the average. The fundamental idea was similar to
that of the present paper but the extension was made only in the low frequency region. Several different
energy-based formulations of the dynamic effective properties of inhomogeneous materials have been
proposed for electromagnetic (Stroud and Pan, 1978; Niklasson et al., 1981; Niklasson and Granqvist,
1984) and clastic (Kim et al., 1995; Kim, 2003a) wave propagation problems. In spite of different
assumptions and theoretical backgrounds, the underlying ideas of these theories are all closely related in
that the effective medium is defined in terms of the forward scattering amplitude for the constituents
embedded in the yet-unknown effective medium. Most recently, Kanaun and Levin (2003) reviewed and
further developed three effective medium theories for axial shear wave propagation in fiber-reinforced
composites. The present dynamic model corresponds to the third kind effective medium theory in Kanaun
and Levin (2003).

In this paper, the generalized self-consistent model for the analysis of elastic wave propagation in the
composite materials is recast. The self-consistency of the dynamic effective medium is that the energy in the
model is the same with the energy in the effective homogeneous medium when they are under the same
dynamic loading. The extinguished energy in the model is then evaluated using the recently derived energy
theorem for the associated scattering problem, based on which the self-consistency conditions for effective
properties are drawn. A comparison to the results from Yang and Mal (1994) and Yang (2003) is presented.
Numerical results are given for different cases of fiber-reinforced and particulate composites. GSCM with
an alternative structure in which the materials for the core and the outer shell are switched is examined for
its dynamic behavior. Physical realizability of the dynamic model is discussed briefly.

2. Dynamic GSCM

Consider a three-phase geometrical model for the fiber-reinforced and particulate composite materials as
shown in Fig. 1. The cylindrical (or spherical) inclusion of radius a is embedded in a concentric annulus (or
shell) of the matrix material of radius b, which in turn is embedded in an infinitely extended effective
medium that has yet-unknown material properties. The radius b of the composite inclusion is set for the
prescribed inclusion volume fraction to be vy = a?/b* for a fiber-reinforced composite and vy = a*/b* for a
particulate composite. Although Fig. 1 represents for the composites with cylindrical and spherical
inclusions, the theory presented below is not limited to only these geometries but applicable, in principle, to
any other inclusion shapes.
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Effective medium

Fig. 1. The generalized self-consistent model for the dynamic problem.

Suppose now a plane elastic longitudinal or shear wave propagates in the effective medium surrounding
the embedded composite inclusion as shown in Fig. 1. The incident wave is assumed to be equal to the mean
wave field in the composite material by a loading applied at infinitely large distance. To derive the
expressions for the effective dynamic properties, the total energy (U) of the elastic wave field in the model is
calculated. As in the static GSCM, the total energy is expressed as the sum of the energy (Up) in the same
medium without the composite inclusion by the external loading and the disturbed energy (U) due to the
presence of the embedded composite inclusion,

U=U,-U. (1)

It should be noted that U, and U correspond simply to the energy of the incident wave field and the

extinguished energy (U™) of the scattering problem. Now, a self-consistency of the effective medium is

stated that the total energy in the model is the same with the energy of the mean wave field in the composite

material, namely, the energy of the incident wave in the homogeneous effective medium under the same
dynamic loading, which can be written

U= U07 (2)
and equivalently from Eq. (2)
U=U™=0. (3)

Note that the present procedure is exactly analogous to that of the GSCM for static effective properties
(Christensen and Lo, 1979; Christensen, 1990) and thus does not rely on the multiple scattering formalism
of Waterman and Truell (1961) as in Yang and Mal (1994) and Yang (2003).

Eq. (3) can be written equivalently in terms of the extinction cross-sections (the extinguished power
normalized by the intensity of the incident wave) of the composite inclusion in the model:

Zim — O, (4)
Zg)ilt =0, (5)
Zg);-ll =0, (6)

where X7, 2§V, and Xg}; are the extinction cross-sections for the longitudinal and vertically polarized shear
(SV) and horizontally polarized shear (SH) waves, respectively. It is noted that the above formulae are the
same with those of Niklasson et al. (1981) and Niklasson and Granqvist (1984) for the electromagnetic
wave propagation, which were proposed, however, only on the purely physical ground.

Since the effective medium is presumed to be mechanically equivalent to the actual composite medium,
the medium in the associated scattering problem has to be energy-absorbing (even when there is no
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absorption in the constituents) for taking the attenuation due to incoherent scattering into account. The
associated scattering problem is, therefore, defined to be a scattering by the composite inclusion in an
absorbing surrounding medium. For this reason, the extinguished power (the extinction cross-section),
which accounts for both the effects of the scattering and the absorption, is the relevant physical quantity to
calculate the total power disturbance by the composite inclusion rather than the scattered power (the
scattering cross-section). Kim (2003b,c) has recently obtained the expressions of the generalized extinction
cross-sections for the elastic wave scattering in an absorbing medium,

I = —4Re Kl({(;) ] i=L, SV and SH (7)
for a two-dimensional object and
(0
I = _4nRe Kk(f)] , i=L, SVand SH (8)

for a three-dimensional object, where (kL) and (ks) are the wavenumbers of longitudinal and shear waves in
the effective medium and f1,(0), fsv(0) and fsu(0) are the forward scattering amplitudes of the longitudinal,
SV and SH waves, respectively. It is noted that the extinction cross-sections in an absorbing medium are
formally the same with those in the lossless medium. For a spherical inclusion, it is noted also that
I = 2y Since the wavenumbers ((kp) and (ks)) are complex quantities, Eqs. (4)—(6) are, referring to Eqgs.
(7) and (8), commonly in both two- and three- dimensional spaces, equivalent to

JL(0) =0, 9)
fSV(O) :07 (10)
Jsu(0) =0. (11)

These are the formulae for the dynamic effective media of the fiber-reinforced and the particulate
composites derived in the GSCM for the elasodynamic problem, while this type of formulation has been
used in electromagnetic problems (Niklasson et al., 1981; Niklasson and Granqgvist, 1984). When the
effective medium is isotropic, Egs. (10) and (11) are redundant to each other.

Egs. (9)—(11) appear to be different from those of Yang and Mal (1994) for a fiber-reinforced composite,

2 2
P |1 - 2O 2imfim) |y gy and sH (12)
(ki) (ki)
and of Yang (2003) for a particulate composite
i 2 2
L= |14 20 2mmfim) g s (13)
(ki) (k)

both of which were obtained based on the Waterman and Truell (1961), and where f;(n) is the backward
scattering amplitude of the corresponding wave and n, is the number of inclusions in unit volume (area).
Because of the simultaneous application of the single scattering approximation in the Waterman—Truell
theory and the approximation of the self-consistent embedding scheme in the GSCM, the physical impli-
cation of Egs. (12) and (13) is not quite obvious. On the contrary, the physical implication of Egs. (11)—(13)
is straightforward and easy to understand: the forward scattering amplitude which is proportional to the
total extinguished energy due to the embedded composite object, vanishes when there is no scattering thus
only when the surrounding medium is the effective medium.
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It can be shown on a purely physical basis that the formulae of Yang and Mal (1994) and Yang (2003),
namely, Egs. (12) and (13) reduce to the derived formulae Egs. (9)—(11). One of sufficient conditions of, for
example, the longitudinal wave propagation in a composite with arbitrary shaped inclusions is

f(0) =0, (14)
and
fi(m) = 0. (15)

Since the forward scattering amplitude is proportional to the total energy abstracted from the incident
wave due to the presence of the object during the course of scattering, the absence of the forward scattering
amplitude indicates simply that there is no scattering, and accordingly the backward scattering amplitude
should also be absent. Indeed, it is impossible to conceive a real physical situation in which the forward
scattering amplitude of a single object disappears while the backward scattering amplitude still exists.
Therefore, the latter condition Eq. (15) is redundant to the former Eq. (14), or fi.(n) = y/L(0) for a fre-
quency dependent coefficient y = y(w). Substituting this into Eq. (12) or Eq. (13) yields that the only
physically meaningful necessary and sufficient condition for the longitudinal wave excitation is f.(0) = 0.
This inference works in the same way for the SV and SH wave propagations. The equivalence is thus
hypothesized.

The equivalence is shown also numerically. First, the SH wave propagation in SiC-Ti fiber-reinforced
composite is considered. The material properties are taken from Yang and Mal (1994) as presented in Table
1. The fiber volume fractions are 15%, 25%, and 35%. The effective dynamic density is assumed to be the
volume fraction weighted average: (p) = (1 — v¢)p, + v¢p, as in Yang and Mal (1994) and Yang (2003).
Note that this assumption may not be correct when densities of the constituents differ larger than an order
of magnitude where the inertial effect due to the density mismatch cannot be ignored any more. Fig. 2
shows the effective wave speed normalized by the shear wave speed in matrix and the coherent wave
attenuation 4nim|{ksy)]/Re[(ksn)]. It is noted that the results from the present theory and from the theory of
Yang and Mal (1994) are indistinguishable illustrating their equivalence. Excessively small attenuations are
observed in the low frequency region (ksja < 1.0) regardless of the volume fraction. Second, L and S wave
propagations in SiC-Al particulate composite with particle volume fraction of 30% are considered. This is
the example in Yang’s (2003) paper from which the material properties are obtained as shown in Table 1.
Fig. 3 shows L and S wave speeds normalized by the corresponding wave speeds in the matrix and coherent
attenuations. Results calculated by the present theory and by the theory of Yang (2003) coincide. Finally,
the SV wave propagation in the titanium aluminide matrix reinforced by SiC fibers with a carbon-coating
layer is considered. The fiber volume fraction is 35% and the thickness of the carbon layer is 5% of the fiber
radius (Yang and Mal, 1997). In the case also, the present theory and Yang and Mal (1997) coincide exactly
with each other.

Table 1
Material properties used in the calculations
Material E (GPa) u (GPa) p (kg/m®)
Al 71.1 26.5 2706
Ti (Fig. 2) 120.8 459 4540
Ti (Fig. 4) 96.5 37.1 4500
SiC (Figs. 2 and 3) 440.0 188.0 3180
SiC (Fig. 4) 431.0 172.0 3200
Carbon layer 34.5 14.3 1400

Steel 113.2 80.9 7800
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Fig. 2. (a) Normalized effective SH wavespeed in SiC-Ti composite at different fiber volume fractions, calculated by the present theory
and by the theory of Yang and Mal (1994). (b) Specific SH wave attenuation capacity of SiC-Ti composite at different fiber volume
fractions, calculated by the present theory and by the theory of Yang and Mal (1994).
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Fig. 3. (a) Normalized effective L and S wavespeeds in SiC-Al particulate composite at Al particle volume fraction 30%, calculated by
the present theory and by the theory of Yang (2003). (b) Coherent L and S wave attenuations of SiC-Al particulate composite at Al
particle volume fraction 30%, calculated by the present theory and by the theory of Yang (2003).

Another structure of the model alternative to the ordinary one shown in Fig. 1 can be constructed by
switching the materials for the core and the concentric annulus (or shell) in the model as shown in Fig. 5.
The inner and outer radii @ and b are determined by vy = (b*> — a?)/b? for the two dimensional, and
v = (b’a®)/b* for the three dimensional configurations. In the static problem, this alternative model is
known to yield effective stiffness values coincident with the rigorous upper bounds (Hashin, 1984) whereas
the ordinary model to yield the rigorous lower bounds. Here, the model is examined for its dynamic
behavior from numerical results to see if the bounding of the two models consistently exists in the finite
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Fig. 4. (a) Normalized effective SV wavespeed in Ti matrix composite reinforced by SiC with carbon coating at fiber volume fraction
35%, calculated by the present theory and by the theory of Yang and Mal (1997). The coating layer thickness (%) to fiber outer radius
(@) is h/a=10.05. (b) Coherent SV wave attenuation in Ti matrix composite reinforced by SiC with carbon coating at fiber volume
fraction 35%, calculated by the present theory and by the theory of Yang and Mal (1997). The coating layer thickness (%) to fiber outer
radius (a) is h/a=0.05.

Effective medium

Fig. 5. An alternative structure of the generalized self-consistent model. The materials for the core and the annulus are switched. The
radii @ and b are determined, vy = (b* — a*)/b? for the two dimensional, and vy = (b* — a*)/b? for the three dimensional problem.

frequency region. Fig. 6 shows normalized SH wave speeds in steel-Al composite with fiber volume fraction
40% calculated by using both the ordinary and alternative models and the dynamic self-consistent model
(SCM) of Kim (2003). Material properties of the steel fiber are shown in Table 1. Consistently to the static
case, these dynamic GSCMs nicely bound the SCM in the quasi-static regime (ka<<1). However, the
bounding behavior is not extended to the higher frequency region. With the increase of frequency the
alternative GSCM shows much different behavior, furthermore crossing the ordinary GSCM while
the ordinary GSCM seems to follow the SCM as a lower bound. The abrupt increase of the wave speed at
around ka = 1 is know to be due to the simple-oscillator type resonance of heavy inclusions restrained in
the matrix (Moon and Mow, 1970; Kim et al., 1995). This motion cannot be described by the structure in
the alternative GSCM because the heavy and stiffer inclusion is modeled to be the outer shell, which
prevents the formation of the simple oscillator resonance of the inclusions. Therefore, the alternative
GSCM, although it yields the upper bound of the effective stiffness in the static limit, does not correctly
describe the wave motion in the composite.
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Fig. 6. Normalized effective SH wavespeed in Al matrix composite reinforced by steel fibers of 40% volume fraction. GSCM with two
different microstructures are compared with the self-consistent model (Kim, 1996, 2003a).

3. Static limit

It can be shown that in the low frequency limit the derived formulae recover the static effective properties
predicted by the static GSCM. The proof of this may be trivial as a matter of complicated algebra. Instead
of giving the proof here, an interesting aspect of the dynamic version of the GSCM in the low frequency
limit is noted.

Consider the longitudinal wave propagation in a composite material with spherical inclusions (Yang,
2003). The forward scattering amplitude of a spherical composite inclusion for the longitudinal wave
scattering in the low frequency limit is given (see Appendix A)

J(0) = (Ao + 34, + 542), (16)

1
)

where i is the unit imaginary number and 4, (n = 0, 1,2) are the lowest order scattering coefficients given as

X (K — (K)) + vr(Ky — Ki) 3,(73,1‘1‘ + 0(x?) a7
3K+ () +dur(Ky — Ky) s 4 o(x2) |
_x_3 P P2 Py 2
e R R P ]| 18
. 3 _ - R Hy (9K 48ty ) +6(u) (K1 +2p)
Ay, = 4i< > ('ul <'u>) (/1 a ) 1y (9K 1 +8411 ) +65 (K1 +241) + 0( ) 7 (19)
3 (1) (9(K) + 8(w)) + 61, ((K) + 2(w)) — vr(py — )P + O(x?)
P_6 (1) (K1 4 2p) (9(K) + 8(w) — iy ((K) +2(u)) (9K + 8py)

3

1 (9Kt + 8py) + 64, (K + 2p)
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where K;, and p,, the bulk and shear moduli of the constituents 1 and 2, quantities in ( ) are those of
effective medium, and the parameter x = (ki )b. To the best of author’s knowledge, the above asymptotic
scattering coeflicients have not been presented in the literature so far.

Eq. (14) is satisfied only when 4y = 4| = 4, = 0 respectively, since these are coefficients of orthogonal
spherical harmonics (Ying and Truell, 1956). Therefore, neglecting the higher-order terms in the above
coefficients, the effective bulk modulus, density and shear modulus are obtained explicitly

v (K, — Ky)

K=K, + , 20
(&) PTTH (— ) (K — K /(K +4/3u) 2
(p) = vepa + (1 = vi)py, 1)
61 (K1 +2p1) K
) = p [1 + p1<9K:+8Hi) —ur(l - #_T)} (22)
- M 61y (K142, 6(Ki+21) Y]’
1+ SR o G (1 - )]

where the constituent 1 denotes the matrix of the composites. First of all, it is noted that these effective
moduli are identical to those of Kuster and Toksoz (1974) which are the rigorous lower bounds of Hashin
and Shtrikman (1963). While the effective bulk modulus coincides with that from the static GSCM
(Christensen and Lo, 1979; Christensen, 1990), the effective shear modulus (a cross modulus) does not. As a
matter of course, the low frequency limit result for the shear wave incidence case gives the effective shear
modulus (Yang and Mal, 1994) of the static GSCM (Christensen and Lo, 1979; Christensen, 1990). The
model thus provides two effective shear moduli dependently on the type of the excitation wave for a single
effective medium. This fact leads to the nonuniqueness of the effective medium when it is defined through
the GSCM in the finite frequency region. Therefore, the effective medium in the dynamic GSCM is
questioned of its physical realizability. The physical realizability of micromechanical models has been
discussed by Berryman and Berge (1996). It was noted that the existence of scattering analog is a necessary
condition for the realizability but not sufficient to guarantee it. This issue requires further investigation.

4. Summary

The generalized self-consistent model for the elastic wave propagation in composite materials is recast.
The self-consistent conditions for the effective medium are derived, resulting in the forms different from
those of the existing theory, from the energy consideration analogously to the static GSCM. The derived
formulae are shown numerically to be equivalent to those in the theory of Yang and Mal (1994) and Yang
(2003) but the present ones have self-obvious physical meaning as well as are straightforward compared to
the existing ones. The present model is general in that the frequency dependent electromagnetic properties
of the same composite can be obtained equally by finding the properties that make the forward scattering
amplitude of electromagnetic waves by the same composite inclusion to be zero. GSCM with an alternative
structure seems to be unable to describe correctly the dynamic behavior of inclusions in a composite
medium. In the low frequency limit, the dynamic GSCM produces two effective shear moduli, which raises
the physical realization problem of the model.

Appendix A. Low frequency spherical GSCM for longitudinal elastic wave propagation

The problem of the longitudinal wave scattering by a concentric composite spherical inclusion shown in
Fig. 1 is analyzed briefly. The longitudinal and shear waves are represented by their displacement potentials
® and ¥ (Ying and Truell, 1956) that satisfy the scalar wave equations
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(V2+ k)P =0, (A1)

(V2 +hk5)¥ =0, (A.2)

where k. = w/{(%+ 2u)/p}"* and ks = w/(u/p)"* are the wavenumbers of longitudinal and shear waves,
A, ware Lame elastic constants, w is the angular frequency and p is the material density. The incident plane
longitudinal wave can be expressed as

NgE

@, =S (20 + 1)ju((k)r)P,(cos 0), (A.3)

Il
o

n

where j, is the spherical Bessel function of order » and P, is the Legendre polynomials. The potentials for
scattered waves in the effective medium are given

&, = i i"(2n + 1)A,h,({kL)7)P,(cos 0), (A.4)
Y, = ZOC: i"(2n + 1)B,h,({ks)r)P,(cos ), (A.5)

Il
=

where £, is the first kind spherical Hankel function of order n. The waves in the shell are represented by

D = zx: i"(2n + 1)[Cpjn(ki1r) + E,yu(kpir)|Py(cos 0), (A.6)
¥ = Zoo: i"(2n + 1)[Dyju(ks17) + Fyu(ks17)]|Py(cos 0), (A7)

3
Il
=}

where y, is the spherical Neuman function of order n. The potentials for waves in the core are

b, =

NgE

i"(2n + 1)G,j,(kpor)P,(cos 0), (A.8)

Il
=}

I
NgE

v, i"(2n + 1)H,j,(ksar)P,(cos 0). (A.9)

Il
=}

n

At two boundaries r = a and r = b, the following continuity conditions for displacement and stress com-
ponents must be satisfied;

Upe = Upl, Uge = Ugl,  Tre = Ty, Trge = Tro1 At 7 = ba (AIO)
Ul = U, Ul = U2, Tl = T2, Tt = T2 At ¥ =a, (A.11)

Substituting the displacement and stress components derived from their relations to potentials in the
spherical coordinate system yields an 8 x 8 system linear equation for the unknown coefficients and thus the
scattering coefficients 4, can be determined by solving the system linear equation. The forward scattering
amplitude is

1
i(ky)

JL(0) = i(Zn + 1)4,. (A.12)

n
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When wavelengths of all associated waves are much larger than the outer radius of the sphere
({kL)b, {ks)b < 1) the spherical wave functions can be expanded asymptotically in polynomial series form
(Morse and Feshbach, 1953), that is,

o nl(22)" B 2z

@)~ G [1 2(2n+3)]’ (A-13)

ho(z) ~ _2(1 tiz), (A.14)

hn(z) ~ 72’512,:{1 {1 + 2(2,12_ 1)} (n>1) (A.15)
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