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Abstract

The generalized self-consistent model (GSCM) for the analysis of elastic wave propagation in composite materials is

recast. Following the idea of the GSCM in the static problem, elastic wave energy in the model is evaluated by applying

the energy theorem for the elastic wave scattering in an absorbing medium. The conditions for dynamic effective

medium are then obtained in a self-consistent way as those under which the extinguished wave energy in the model

vanishes, thus without relying on the multiple scattering formalism. It is shown that the present dynamic GSCM is

equivalent to the models of Yang and Mal [J. Mech. Phys. Solids 42 (1994) 1945] and Yang [J. Appl. Mech. 70 (2003)

575] that have been obtained through the use of the multiple scattering formalism of Waterman and Truell. Numerical

results for both fiber-reinforced and particulate composites are presented. Physical realizability of the dynamic GSCM

in the low frequency limit is discussed briefly.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The analysis of elastic wave propagation in inhomogeneous media for determining their overall dynamic

properties has been investigated by many authors for several decades due to its necessity, for example, in
the ultrasonic nondestructive evaluation (NDE) of the composite materials. Elastic waves propagating in

such media inevitably undergo multiple scattering by distributed inhomogeneities, which results in dis-

persion and attenuation of the coherent wave. Due to the inherent complexity of the multiple scattering

phenomenon, analytical modeling of wave propagation in the inhomogeneous media is intractable. A brief

review of different proposed theories can be found in Yang and Mal (1994) and comparisons between them

have been made with their numerical results (Kim, 1996, 2003a).
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On the other hand, numerous model-based approaches have been developed in the area of the mi-

cromechanics of composite materials for the determination of static effective properties (Nemat-Nasser and

Hori, 1999). Among many others, the generalized self-consistent model (GSCM) proposed by Christensen

and Lo (1979) and validated later by Christensen (1990) has been received considerable attention in the
recognition that it is the most reliable model to predict static effective properties of composites. For this

reason, the GSCM has been studied extensively and extended to different types of composites (Jiang et al.,

2001; Huang and Hu, 1995), and also to composites with imperfections or damage (Teng, 1992; Benveniste,

1985).

An extension of the GSCM to the dynamic (elastic wave propagation) problem has been attempted by

Yang and Mal (1994) for a fiber-reinforced composite and by Kim (1994) and Yang (2003) for a particulate

composite. Yang and Mal (1994) and Yang (2003) implemented the multiple scattering theory of Waterman

and Truell (1961) in the frame work of the GSCM and obtained the formulae for the dynamic effective
medium in a self-consistent form of the multiple scattering formulae which were originally in non-self-

consistent forms. Huang and Rokhlin (1995) and Yang and Mal (1996) applied the dynamic GSCM to

coated fiber-reinforced composites to investigate the effect of interphase weakening on the wave propa-

gation. Kim (1994) has extended the GSCM by attempting to find effective material properties so that the

total scattered power (or energy) in the model vanishes on the average. The fundamental idea was similar to

that of the present paper but the extension was made only in the low frequency region. Several different

energy-based formulations of the dynamic effective properties of inhomogeneous materials have been

proposed for electromagnetic (Stroud and Pan, 1978; Niklasson et al., 1981; Niklasson and Granqvist,
1984) and elastic (Kim et al., 1995; Kim, 2003a) wave propagation problems. In spite of different

assumptions and theoretical backgrounds, the underlying ideas of these theories are all closely related in

that the effective medium is defined in terms of the forward scattering amplitude for the constituents

embedded in the yet-unknown effective medium. Most recently, Kanaun and Levin (2003) reviewed and

further developed three effective medium theories for axial shear wave propagation in fiber-reinforced

composites. The present dynamic model corresponds to the third kind effective medium theory in Kanaun

and Levin (2003).

In this paper, the generalized self-consistent model for the analysis of elastic wave propagation in the
composite materials is recast. The self-consistency of the dynamic effective medium is that the energy in the

model is the same with the energy in the effective homogeneous medium when they are under the same

dynamic loading. The extinguished energy in the model is then evaluated using the recently derived energy

theorem for the associated scattering problem, based on which the self-consistency conditions for effective

properties are drawn. A comparison to the results from Yang and Mal (1994) and Yang (2003) is presented.

Numerical results are given for different cases of fiber-reinforced and particulate composites. GSCM with

an alternative structure in which the materials for the core and the outer shell are switched is examined for

its dynamic behavior. Physical realizability of the dynamic model is discussed briefly.
2. Dynamic GSCM

Consider a three-phase geometrical model for the fiber-reinforced and particulate composite materials as

shown in Fig. 1. The cylindrical (or spherical) inclusion of radius a is embedded in a concentric annulus (or

shell) of the matrix material of radius b, which in turn is embedded in an infinitely extended effective

medium that has yet-unknown material properties. The radius b of the composite inclusion is set for the

prescribed inclusion volume fraction to be vf ¼ a2=b2 for a fiber-reinforced composite and vf ¼ a3=b3 for a
particulate composite. Although Fig. 1 represents for the composites with cylindrical and spherical

inclusions, the theory presented below is not limited to only these geometries but applicable, in principle, to
any other inclusion shapes.



Fig. 1. The generalized self-consistent model for the dynamic problem.
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Suppose now a plane elastic longitudinal or shear wave propagates in the effective medium surrounding

the embedded composite inclusion as shown in Fig. 1. The incident wave is assumed to be equal to the mean

wave field in the composite material by a loading applied at infinitely large distance. To derive the

expressions for the effective dynamic properties, the total energy (U) of the elastic wave field in the model is

calculated. As in the static GSCM, the total energy is expressed as the sum of the energy (U0) in the same

medium without the composite inclusion by the external loading and the disturbed energy (~U) due to the
presence of the embedded composite inclusion,
U ¼ U0 � ~U: ð1Þ

It should be noted that U0 and ~U correspond simply to the energy of the incident wave field and the

extinguished energy (Uext) of the scattering problem. Now, a self-consistency of the effective medium is

stated that the total energy in the model is the same with the energy of the mean wave field in the composite
material, namely, the energy of the incident wave in the homogeneous effective medium under the same

dynamic loading, which can be written
U ¼ U0; ð2Þ

and equivalently from Eq. (2)
~U ¼ Uext ¼ 0: ð3Þ

Note that the present procedure is exactly analogous to that of the GSCM for static effective properties

(Christensen and Lo, 1979; Christensen, 1990) and thus does not rely on the multiple scattering formalism

of Waterman and Truell (1961) as in Yang and Mal (1994) and Yang (2003).

Eq. (3) can be written equivalently in terms of the extinction cross-sections (the extinguished power

normalized by the intensity of the incident wave) of the composite inclusion in the model:
Rext
L ¼ 0; ð4Þ

Rext
SV ¼ 0; ð5Þ

Rext
SH ¼ 0; ð6Þ
where Rext
L , Rext

SV, and Rext
SH are the extinction cross-sections for the longitudinal and vertically polarized shear

(SV) and horizontally polarized shear (SH) waves, respectively. It is noted that the above formulae are the

same with those of Niklasson et al. (1981) and Niklasson and Granqvist (1984) for the electromagnetic

wave propagation, which were proposed, however, only on the purely physical ground.
Since the effective medium is presumed to be mechanically equivalent to the actual composite medium,

the medium in the associated scattering problem has to be energy-absorbing (even when there is no
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absorption in the constituents) for taking the attenuation due to incoherent scattering into account. The

associated scattering problem is, therefore, defined to be a scattering by the composite inclusion in an

absorbing surrounding medium. For this reason, the extinguished power (the extinction cross-section),

which accounts for both the effects of the scattering and the absorption, is the relevant physical quantity to
calculate the total power disturbance by the composite inclusion rather than the scattered power (the

scattering cross-section). Kim (2003b,c) has recently obtained the expressions of the generalized extinction

cross-sections for the elastic wave scattering in an absorbing medium,
Rext
i ¼ �4Re

fið0Þ
kih i

� �
; i ¼ L; SV and SH ð7Þ
for a two-dimensional object and
Rext
i ¼ �4pRe

fið0Þ
kih i2

" #
; i ¼ L; SV and SH ð8Þ
for a three-dimensional object, where kLh i and kSh i are the wavenumbers of longitudinal and shear waves in

the effective medium and fLð0Þ, fSVð0Þ and fSHð0Þ are the forward scattering amplitudes of the longitudinal,

SV and SH waves, respectively. It is noted that the extinction cross-sections in an absorbing medium are
formally the same with those in the lossless medium. For a spherical inclusion, it is noted also that

Rext
SH ¼ Rext

SV. Since the wavenumbers ( kLh i and kSh i) are complex quantities, Eqs. (4)–(6) are, referring to Eqs.

(7) and (8), commonly in both two- and three- dimensional spaces, equivalent to
fLð0Þ ¼ 0; ð9Þ

fSVð0Þ ¼ 0; ð10Þ

fSHð0Þ ¼ 0: ð11Þ
These are the formulae for the dynamic effective media of the fiber-reinforced and the particulate

composites derived in the GSCM for the elasodynamic problem, while this type of formulation has been
used in electromagnetic problems (Niklasson et al., 1981; Niklasson and Granqvist, 1984). When the

effective medium is isotropic, Eqs. (10) and (11) are redundant to each other.

Eqs. (9)–(11) appear to be different from those of Yang and Mal (1994) for a fiber-reinforced composite,
1 ¼ 1

"
� 2in0fið0Þ

kih i2

#2

� 2in0fiðpÞ
kih i2

" #2

; i ¼ L; SV and SH ð12Þ
and of Yang (2003) for a particulate composite
1 ¼ 1

"
þ 2pn0fið0Þ

kih i2

#2

� 2pn0fiðpÞ
kih i2

" #2

; i ¼ L; and S ð13Þ
both of which were obtained based on the Waterman and Truell (1961), and where fiðpÞ is the backward

scattering amplitude of the corresponding wave and n0 is the number of inclusions in unit volume (area).

Because of the simultaneous application of the single scattering approximation in the Waterman–Truell

theory and the approximation of the self-consistent embedding scheme in the GSCM, the physical impli-

cation of Eqs. (12) and (13) is not quite obvious. On the contrary, the physical implication of Eqs. (11)–(13)

is straightforward and easy to understand: the forward scattering amplitude which is proportional to the
total extinguished energy due to the embedded composite object, vanishes when there is no scattering thus

only when the surrounding medium is the effective medium.
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It can be shown on a purely physical basis that the formulae of Yang and Mal (1994) and Yang (2003),

namely, Eqs. (12) and (13) reduce to the derived formulae Eqs. (9)–(11). One of sufficient conditions of, for

example, the longitudinal wave propagation in a composite with arbitrary shaped inclusions is
Table

Materi

Mat

Al

Ti (F

Ti (F

SiC

SiC

Carb

Stee
fLð0Þ ¼ 0; ð14Þ
and
fLðpÞ ¼ 0: ð15Þ
Since the forward scattering amplitude is proportional to the total energy abstracted from the incident

wave due to the presence of the object during the course of scattering, the absence of the forward scattering

amplitude indicates simply that there is no scattering, and accordingly the backward scattering amplitude

should also be absent. Indeed, it is impossible to conceive a real physical situation in which the forward
scattering amplitude of a single object disappears while the backward scattering amplitude still exists.

Therefore, the latter condition Eq. (15) is redundant to the former Eq. (14), or fLðpÞ ¼ cfLð0Þ for a fre-

quency dependent coefficient c ¼ cðxÞ. Substituting this into Eq. (12) or Eq. (13) yields that the only

physically meaningful necessary and sufficient condition for the longitudinal wave excitation is fLð0Þ ¼ 0.

This inference works in the same way for the SV and SH wave propagations. The equivalence is thus

hypothesized.

The equivalence is shown also numerically. First, the SH wave propagation in SiC-Ti fiber-reinforced

composite is considered. The material properties are taken from Yang and Mal (1994) as presented in Table
1. The fiber volume fractions are 15%, 25%, and 35%. The effective dynamic density is assumed to be the

volume fraction weighted average: qh i ¼ 1� vfð Þq1 þ vfq2 as in Yang and Mal (1994) and Yang (2003).

Note that this assumption may not be correct when densities of the constituents differ larger than an order

of magnitude where the inertial effect due to the density mismatch cannot be ignored any more. Fig. 2

shows the effective wave speed normalized by the shear wave speed in matrix and the coherent wave

attenuation 4pIm½ kSHh i	=Re½ kSHh i	. It is noted that the results from the present theory and from the theory of

Yang and Mal (1994) are indistinguishable illustrating their equivalence. Excessively small attenuations are

observed in the low frequency region (kS1a < 1:0) regardless of the volume fraction. Second, L and S wave
propagations in SiC-Al particulate composite with particle volume fraction of 30% are considered. This is

the example in Yang’s (2003) paper from which the material properties are obtained as shown in Table 1.

Fig. 3 shows L and S wave speeds normalized by the corresponding wave speeds in the matrix and coherent

attenuations. Results calculated by the present theory and by the theory of Yang (2003) coincide. Finally,

the SV wave propagation in the titanium aluminide matrix reinforced by SiC fibers with a carbon-coating

layer is considered. The fiber volume fraction is 35% and the thickness of the carbon layer is 5% of the fiber

radius (Yang and Mal, 1997). In the case also, the present theory and Yang and Mal (1997) coincide exactly

with each other.
1

al properties used in the calculations

erial E (GPa) l (GPa) q (kg/m3)

71.1 26.5 2706

ig. 2) 120.8 45.9 4540

ig. 4) 96.5 37.1 4500

(Figs. 2 and 3) 440.0 188.0 3180

(Fig. 4) 431.0 172.0 3200

on layer 34.5 14.3 1400

l 113.2 80.9 7800
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Fig. 2. (a) Normalized effective SH wavespeed in SiC-Ti composite at different fiber volume fractions, calculated by the present theory

and by the theory of Yang and Mal (1994). (b) Specific SH wave attenuation capacity of SiC-Ti composite at different fiber volume

fractions, calculated by the present theory and by the theory of Yang and Mal (1994).
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Fig. 3. (a) Normalized effective L and S wavespeeds in SiC-Al particulate composite at Al particle volume fraction 30%, calculated by

the present theory and by the theory of Yang (2003). (b) Coherent L and S wave attenuations of SiC-Al particulate composite at Al

particle volume fraction 30%, calculated by the present theory and by the theory of Yang (2003).
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Another structure of the model alternative to the ordinary one shown in Fig. 1 can be constructed by
switching the materials for the core and the concentric annulus (or shell) in the model as shown in Fig. 5.

The inner and outer radii a and b are determined by vf ¼ ðb2 � a2Þ=b2 for the two dimensional, and

vf ¼ ðb3a3Þ=b3 for the three dimensional configurations. In the static problem, this alternative model is

known to yield effective stiffness values coincident with the rigorous upper bounds (Hashin, 1984) whereas

the ordinary model to yield the rigorous lower bounds. Here, the model is examined for its dynamic

behavior from numerical results to see if the bounding of the two models consistently exists in the finite
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Fig. 4. (a) Normalized effective SV wavespeed in Ti matrix composite reinforced by SiC with carbon coating at fiber volume fraction

35%, calculated by the present theory and by the theory of Yang and Mal (1997). The coating layer thickness (h) to fiber outer radius

(a) is h=a¼ 0.05. (b) Coherent SV wave attenuation in Ti matrix composite reinforced by SiC with carbon coating at fiber volume

fraction 35%, calculated by the present theory and by the theory of Yang and Mal (1997). The coating layer thickness (h) to fiber outer

radius (a) is h=a¼ 0.05.

Fig. 5. An alternative structure of the generalized self-consistent model. The materials for the core and the annulus are switched. The

radii a and b are determined, vf ¼ ðb2 � a2Þ=b2 for the two dimensional, and vf ¼ ðb3 � a3Þ=b3 for the three dimensional problem.
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frequency region. Fig. 6 shows normalized SH wave speeds in steel-Al composite with fiber volume fraction

40% calculated by using both the ordinary and alternative models and the dynamic self-consistent model

(SCM) of Kim (2003). Material properties of the steel fiber are shown in Table 1. Consistently to the static

case, these dynamic GSCMs nicely bound the SCM in the quasi-static regime (ka
1). However, the

bounding behavior is not extended to the higher frequency region. With the increase of frequency the
alternative GSCM shows much different behavior, furthermore crossing the ordinary GSCM while

the ordinary GSCM seems to follow the SCM as a lower bound. The abrupt increase of the wave speed at

around ka ¼ 1 is know to be due to the simple-oscillator type resonance of heavy inclusions restrained in

the matrix (Moon and Mow, 1970; Kim et al., 1995). This motion cannot be described by the structure in

the alternative GSCM because the heavy and stiffer inclusion is modeled to be the outer shell, which

prevents the formation of the simple oscillator resonance of the inclusions. Therefore, the alternative

GSCM, although it yields the upper bound of the effective stiffness in the static limit, does not correctly

describe the wave motion in the composite.
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Fig. 6. Normalized effective SH wavespeed in Al matrix composite reinforced by steel fibers of 40% volume fraction. GSCM with two

different microstructures are compared with the self-consistent model (Kim, 1996, 2003a).

4356 J.-Y. Kim / International Journal of Solids and Structures 41 (2004) 4349–4360
3. Static limit

It can be shown that in the low frequency limit the derived formulae recover the static effective properties

predicted by the static GSCM. The proof of this may be trivial as a matter of complicated algebra. Instead

of giving the proof here, an interesting aspect of the dynamic version of the GSCM in the low frequency

limit is noted.
Consider the longitudinal wave propagation in a composite material with spherical inclusions (Yang,

2003). The forward scattering amplitude of a spherical composite inclusion for the longitudinal wave

scattering in the low frequency limit is given (see Appendix A)
fLð0Þ �
1

i kLh i A0ð þ 3A1 þ 5A2Þ; ð16Þ
where i is the unit imaginary number and An ðn ¼ 0; 1; 2Þ are the lowest order scattering coefficients given as
A0 ¼
x3

3i

ðK1 � Kh iÞ þ vfðK2 � K1Þ ð3 Kh iþ4l1Þ
ð3K2þ4l1Þ

þ Oðx2Þ
ðK1 þ 4

3
lh iÞ þ 4vfðK2 � K1Þ ðl1� lh iÞ

ð3K2þ4l1Þ
þ Oðx2Þ

" #
; ð17Þ

A1 ¼
x3

9i
1

�
� q1

qh i � vf
q2 � q1

qh i þ Oðx2Þ
�
; ð18Þ

A2 ¼
4ix3

3
lh i

ðl1 � lh iÞ � vfðl1 � l2Þ l1ð9K1þ8l1Þþ6 lh iðK1þ2l1Þ
l1ð9K1þ8l1Þþ6l2ðK1þ2l1Þ

þ Oðx2Þ
lh ið9 Kh i þ 8 lh iÞ þ 6l1ð Kh i þ 2 lh iÞ � vfðl1 � l2ÞP þ Oðx2Þ

" #
; ð19Þ

P ¼ 6
lh iðK1 þ 2l1Þð9 Kh i þ 8 lh iÞ � l1ð Kh i þ 2 lh iÞð9K1 þ 8l1Þ

l1ð9K1 þ 8l1Þ þ 6l2ðK1 þ 2l1Þ
;

An ¼ Oðx4Þ; nP 3
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where K1;2 and l1;2 the bulk and shear moduli of the constituents 1 and 2, quantities in h i are those of

effective medium, and the parameter x ¼ kLh ib. To the best of author’s knowledge, the above asymptotic

scattering coefficients have not been presented in the literature so far.

Eq. (14) is satisfied only when A0 ¼ A1 ¼ A2 ¼ 0 respectively, since these are coefficients of orthogonal
spherical harmonics (Ying and Truell, 1956). Therefore, neglecting the higher-order terms in the above

coefficients, the effective bulk modulus, density and shear modulus are obtained explicitly
Kh i ¼ K1 þ
vfðK2 � K1Þ

1þ ð1� vfÞðK2 � K1Þ=ðK1 þ 4=3l1Þ
; ð20Þ

qh i ¼ vfq2 þ ð1� vfÞq1; ð21Þ

lh i ¼ l1

1þ 6l2ðK1þ2l1Þ
l1ð9K1þ8l1Þ

� vfð1� l2
l1
Þ

h i
1þ 6l2ðK1þ2l1Þ

l1ð9K1þ8l1Þ
þ vf

6ðK1þ2l1Þ
ð9K1þ8l1Þ

ð1� l2
l1
Þ

h i ; ð22Þ
where the constituent 1 denotes the matrix of the composites. First of all, it is noted that these effective

moduli are identical to those of Kuster and Toksoz (1974) which are the rigorous lower bounds of Hashin

and Shtrikman (1963). While the effective bulk modulus coincides with that from the static GSCM
(Christensen and Lo, 1979; Christensen, 1990), the effective shear modulus (a cross modulus) does not. As a

matter of course, the low frequency limit result for the shear wave incidence case gives the effective shear

modulus (Yang and Mal, 1994) of the static GSCM (Christensen and Lo, 1979; Christensen, 1990). The

model thus provides two effective shear moduli dependently on the type of the excitation wave for a single

effective medium. This fact leads to the nonuniqueness of the effective medium when it is defined through

the GSCM in the finite frequency region. Therefore, the effective medium in the dynamic GSCM is

questioned of its physical realizability. The physical realizability of micromechanical models has been

discussed by Berryman and Berge (1996). It was noted that the existence of scattering analog is a necessary
condition for the realizability but not sufficient to guarantee it. This issue requires further investigation.
4. Summary

The generalized self-consistent model for the elastic wave propagation in composite materials is recast.

The self-consistent conditions for the effective medium are derived, resulting in the forms different from

those of the existing theory, from the energy consideration analogously to the static GSCM. The derived
formulae are shown numerically to be equivalent to those in the theory of Yang and Mal (1994) and Yang

(2003) but the present ones have self-obvious physical meaning as well as are straightforward compared to

the existing ones. The present model is general in that the frequency dependent electromagnetic properties

of the same composite can be obtained equally by finding the properties that make the forward scattering

amplitude of electromagnetic waves by the same composite inclusion to be zero. GSCM with an alternative

structure seems to be unable to describe correctly the dynamic behavior of inclusions in a composite

medium. In the low frequency limit, the dynamic GSCM produces two effective shear moduli, which raises

the physical realization problem of the model.

Appendix A. Low frequency spherical GSCM for longitudinal elastic wave propagation

The problem of the longitudinal wave scattering by a concentric composite spherical inclusion shown in

Fig. 1 is analyzed briefly. The longitudinal and shear waves are represented by their displacement potentials
U and W (Ying and Truell, 1956) that satisfy the scalar wave equations
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ðr2 þ k2LÞU ¼ 0; ðA:1Þ

ðr2 þ k2SÞW ¼ 0; ðA:2Þ

where kL ¼ x=fðk þ 2lÞ=qg1=2 and kS ¼ x=ðl=qÞ1=2 are the wavenumbers of longitudinal and shear waves,

k, l are Lame elastic constants, x is the angular frequency and q is the material density. The incident plane

longitudinal wave can be expressed as
Ui ¼
X1
n¼0

inð2nþ 1ÞjnðhkLirÞPnðcos hÞ; ðA:3Þ
where jn is the spherical Bessel function of order n and Pn is the Legendre polynomials. The potentials for

scattered waves in the effective medium are given
Ue ¼
X1
n¼0

inð2nþ 1ÞAnhnðhkLirÞPnðcos hÞ; ðA:4Þ

We ¼
X1
n¼0

inð2nþ 1ÞBnhnðhkSirÞPnðcos hÞ; ðA:5Þ
where hn is the first kind spherical Hankel function of order n. The waves in the shell are represented by
U1 ¼
X1
n¼0

inð2nþ 1Þ½CnjnðkL1rÞ þ EnynðkL1rÞ	Pnðcos hÞ; ðA:6Þ

W1 ¼
X1
n¼0

inð2nþ 1Þ½DnjnðkS1rÞ þ FnynðkS1rÞ	Pnðcos hÞ; ðA:7Þ
where yn is the spherical Neuman function of order n. The potentials for waves in the core are
U2 ¼
X1
n¼0

inð2nþ 1ÞGnjnðkL2rÞPnðcos hÞ; ðA:8Þ

W2 ¼
X1
n¼0

inð2nþ 1ÞHnjnðkS2rÞPnðcos hÞ: ðA:9Þ
At two boundaries r ¼ a and r ¼ b, the following continuity conditions for displacement and stress com-

ponents must be satisfied;
ure ¼ ur1; uhe ¼ uh1; srre ¼ srr1; srhe ¼ srh1 at r ¼ b; ðA:10Þ

ur1 ¼ ur2; uh1 ¼ uh2; srr1 ¼ srr2; srh1 ¼ srh2 at r ¼ a; ðA:11Þ
Substituting the displacement and stress components derived from their relations to potentials in the

spherical coordinate system yields an 8 · 8 system linear equation for the unknown coefficients and thus the

scattering coefficients An can be determined by solving the system linear equation. The forward scattering
amplitude is
fLð0Þ ¼
1

ihkLi
X1
n¼0

ð2nþ 1ÞAn: ðA:12Þ
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When wavelengths of all associated waves are much larger than the outer radius of the sphere

(hkLib; hkSib 
 1) the spherical wave functions can be expanded asymptotically in polynomial series form

(Morse and Feshbach, 1953), that is,
jnðzÞ �
n!ð2zÞn

ð2nþ 1Þ! 1

�
� z2

2ð2nþ 3Þ

�
; ðA:13Þ
h0ðzÞ � � i
z
ð1þ izÞ; ðA:14Þ
hnðzÞ � � ið2nÞ!
2nn!znþ1

1

�
þ z2

2ð2n� 1Þ

�
ðnP 1Þ: ðA:15Þ
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